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TRANSVERSE MAGNETIC FIELD PROPELLANT ISOLATOR

John E. Foster
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

SUMMARY

An alternative high voltage isolator for electric propulsion and ground-based ion source applications has
been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage.
The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.

I. INTRODUCTION

Ion sources used for space propulsion or ground-based plasma processing require the plasma production
chamber to be isolated from the gas feed system which is typically at ground potential (either earth or spacecraft
ground depending on the application).  In this respect an isolator is required to not only provide high voltage isola-
tion, but also allow gas flow between a large potential difference without breaking down.1,2 Figure 1 illustrates the
role of such an isolator for an ion thruster application. Here the isolator isolates the propellant feed system at space-
craft ground potential from the discharge chamber, which is held at high voltage. Failure of such isolation due to gas
breakdown within the isolator brings the ion source down to ground potential thereby precluding high voltage ion
beam extraction.

II. BACKGROUND

Electrical isolation of the gas feed system from high voltage, in general, is typically achieved by using
ceramic breaks in the feed line. Figure 2 illustrates such a device in its simplest configuration. The isolator allows
gas to flow from the feedstock or propellant tank while at the same time electrically isolating the ion source from
ground. Such insulators work particularly well at preventing electrical breakdown at modest voltages over a limited
internal pressure range. Breakdown within such devices is a function of  the product of the internal pressure and
insulator gap as described by Paschen’s law (see Fig. 3).3 One of the primary problems in isolator design is the
maximization of the pressure range over which the device can hold off the minimum acceptable breakdown
voltage.

The breakdown problem can be minimized by connecting a number of isolators in series. In this case, the
standoff voltage is distributed between the series of isolators. This arrangement is configured such that the voltage
required for breakdown across each cell greatly exceeds V/N where V is the total standoff voltage and N is the num-
ber of cells in series. In order to operate at high voltage over a wide range of pressure, the number of cells required
can be very large.2,4 This less compact design increases the overall cost and complexity of the isolator. Another ap-
proach to minimizing the likelihood of breakdown is to pack the interior of the isolator with alumina beads.5,6

Packing the isolator with beads minimizes the amount of free space in the isolator; therefore, the energy that a free
electron can gain while traveling across a given open volume is minimized. Additionally, the beads provide added
recombination surface area that would tend to be parasitic on a fledgling discharge. Sintering the beads to form a
porous rod has also been investigated.5,6 These approaches are problematic from a number of standpoints:
(1) Increased device complexity due to the increased number of parts, (2) Fabrication process is complicated due to
the presence of the beads (beads must be tightly packed to prevent the formation of orientation dependent voids) and
(3) Conductive bridges can form on the beads or porus medium during the brazing process or a breakdown event.
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Magnetic insulation has been applied in the past to increase the breakdown voltage across vacuum gaps for
high capacitance capacitor applications, for diodes used in intense ion beam production, and for magnetron designs
used for very high power pulsed microwave radiation.7,8 In order to enhance the operating range of a conventional
isolator and simplify the overall design, an augmented isolator utilizing magnetic insulation has been tested. In this
present work, magnetic insulation has been found to significantly increase the breakdown voltage across the gas
filled gap of a propellant isolator. This augmented model utilizes a conventional isolator immersed in a strong trans-
verse magnetic field generated by commercially available rare-earth magnets. The layout of this component is illus-
trated in Figure 4. The rare-earth magnets provide a strong field very compactly. The transverse magnetic field
slows the development of the electron avalanche along the isolator axis thereby preventing the development of a
breakdown event.

The transverse magnetic field isolator may be best explained by considering the transverse diffusion coeffi-
cient. Classically, the diffusion of electrons across a gap in the presence of a transverse magnetic field varies as 1/B2

in the limit of a large magnetic field, B. The ratio of the electron transverse diffusion coefficient to the unmagnetized
diffusion coefficient may be expressed as:9
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Here, w is the electron cyclotron frequency and v is the electron-neutral collision frequency. The effect of the mag-
netic field is to reduce the rate of diffusion perpendicular to the field lines. Electrons, constrained to the field lines,
can diffuse only by collisions with neutrals or ions. In the presence of a transverse magnetic field and an axial elec-
tric field, the electron will undergo cycloid motion as illustrated in Figure 5. The trajectory of this orbit can be
described by parametric equations:
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where E is the electric field, e is the elementary charge of the electron and me is the mass of an electron.
On the first half of the cycloid orbit, the electron is accelerated by the electric field and therefore gains

energy. During the latter half, it is de-accelerated by the electric field. Minimizing the distance over which the elec-
tron is accelerated can minimize the energy that an electron gains during the first half of a cycle. The maximum
axial distance that the particle travels in the direction against the electric field is 2 · a. The path length, 2 · a, is
inversely proportional to the square of the magnetic field strength.10 The effect of the magnetic field then is to
reduce the energy that an electron gains in the electric field by reducing the acceleration path-length; that is,
increasing the magnetic field decreases the distance over which work is done on an electron by the electric field.11

The utility of the magnetic isolator is now apparent. At low pressures where the mean-free path is long, the
magnetic field constrains the orbit of a free electron to that of a cycloid. Because the electron can gain energy only
over the first half of the orbit, if the field is sufficiently strong then electron will not gain enough energy to ionize
the background gas. In this regard, avalanche formation can be dramatically suppressed using a transverse mag-
netic field. This reasoning is the primary motivation for this work. As the pressure increases, the total collision
mean-free path becomes comparable to the path-length over which the electron is being accelerated. In this case,
collisions with the background gas can significantly disrupt the cycloid motion. Under these conditions, the electron
can gain net energy, ultimately obtaining the ionization potential. Breakdown can occur when the electron has
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gained a significant fraction of the ionization potential (breakdown may also be aided by step-wise events driven
by metastable production at energies below the ionization potential). However, any discharge that manages to get
started is significantly attenuated in the presence of a strong magnetic field due to reduced transverse diffusion.

III. EXPERIMENTAL SET-UP

A schematic of the experimental set-up is shown in Figure 6. The experiments were conducted in a 41 cm
diameter by 43 cm long bell jar. The bell jar was evacuated using a 25 cm cryo-pump which resulted in a base pres-
sure in the high 10–8  Torr range.
     The isolator’s insulator section was made of 15.2 mm long alumina tube with an inside diameter of 3.2 mm. The
inlet and outlet end-caps of the isolator were constructed of Kovar. In order to map the isolator’s performance over a
broad pressure range, the isolator expellant end was attached to tubes with varying exit orifice diameters: 0.15, 0.33,
and 0.762 mm.

A static transverse magnetic field was imposed upon the isolator using four samarium-cobalt permanent
magnets. The magnets were centered over the insulator section using an iron support arm as shown in Figure 4. The
support arm also aids in channeling magnetic flux into the region between poles. The peak field at the center of the
isolator was measured to be 3.6 kG. The field near the end of the ceramic was measured to be 2.7 kG. Because the
energy that an electron gains over a half-cycle is inversely proportional to the magnetic field, it is this reduced field
near the ends of the ceramic that determines the breakdown voltage of the isolator.

A needle valve was used to adjust the flow of xenon (ion thruster propellant). During testing, the isolator
flow rate, which was measured using an in-line flow meter, was varied between 0 and 5 standard cubic centimeters
per minute at room temperature. Pressure associated with these flow rates was computed based on the volumetric
flow and orifice diameter using the Poiseuille equation:12

Q
a

P P Pa= ⋅ ⋅ ⋅ −( )π
η

4

2 18
4

l
( )

Here, Q is the flow potential, a is the radius of the channel, � is the channel length, η is the gas viscosity, Pa is the
arithmetic mean of P2 , the pressure in the channel, and P1 , the pressure in the vacuum vessel. Poiseuille’s equation
applies in the viscous regime where the Knudsen number <0.01. Because flow rate F = Q/(P2 – P1), the pressure
inside the tube can be directly related the measured volumetric flow:
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Breakdown was characterized as the threshold voltage at which the gas in the isolator becomes highly con-
ductive thereby allowing large currents to flow between high potential and ground. In order to determine the break-
down characteristic of the isolator, the breakdown voltage of the propellant isolator was measured as a function of
xenon flow rate. For these tests, the voltage was ramped from 0 to 4000 V using a high voltage power supply. The
current across the gap was measured via the high voltage power supply’s ammeter. A breakdown is recorded when
the 5 mA current limit of the high voltage power supply is tripped.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

      Magnetic isolator testing entailed recording breakdown voltage as a function of internal pressure. Figure 7
illustrates the breakdown characteristic with and without the magnetic field present along with B = 0 data from
literature.13  The plots are essentially Paschen curves. The Paschen minimum for the case without the magnetic field
is ~600 V, which is somewhat higher than the 450 V quoted in literature.13 The disparity between the Paschen data
in Reference 13 and this work for the B = 0 case is attributed to differences in electrode material type, electrode
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geometry and gas purity. As can be seen in Figure 7, the breakdown voltage increases significantly when the mag-
netic field is present. Two things are quite evident from the plots:  (1)  The Paschen minimum shifts to higher
pressure by ~10 Torr when the transverse magnetic field is imposed and (2) The difference in breakdown voltages
for the two cases at a given pressure is reduced at higher pressures (>10 Torr), with this difference slowly decreasing
in the limit of very high pressure. The first observation is quite desirable in that it demonstrates the ability of the
imposed magnetic field to increase the operating range of the isolator. The second observation is associated with a
reduction in the ω/ν ratio as the electron-neutral collision frequency increases with increasing pressure. As pressure
is increased, the effect of the imposed magnetic field becomes less and less.

The Paschen minimum for the transverse magnetic field isolator can be estimated. The minimum should
occur when the mean-free path of the electron is equal to the integrated distance over which the electron is acceler-
ated by the electric field. Under these conditions, the electron’s cycloid motion is disrupted through a collision at
maximum energy gain from the electric field. The electron can then repeat the process and increase its energy
between collisions. Ultimately, the electron achieves enough energy to initiate electrical breakdown of the gas. At
pressures beyond the Paschen minimum, energy gain between collisions is reduced and therefore the breakdown
voltage increases again but at a slower rate.

The total distance actually traveled by the electron during the acceleration phase of the cycloid motion is s,
where

s
dy

dx
dx= + 
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is the portion of the cycloid path integrated from ωt = π to ωt = π/2 as highlighted in Figure 5. Using low energy
electron-neutral collision cross-section data, the electron-neutral mean-free path is calculated:
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here, lne  is the electron–neutral mean-free path, ngas is the neutral gas density, and σne is the low energy electron-
neutral momentum cross section.14 The Paschen minimum for the magnetic isolator should occur when the ratio
s/lne is of order one. This ratio was calculated at a pressure of 10 Torr (Paschen minimum was determined
experimentally to occur at 10 Torr) and a transverse field of 2.7 kG, the minimum field along the isolator ceramic.
A plot of this curve is shown in Figure 8.

Upwards from 1250 V, the ratio increases monotonically as a function of isolator voltage. The ratio behav-
ior below 1250 V is due to the complicated structure of the low energy electron-neutral collision cross-section due to
the Ramsuer effect.15 The calculated ratio is approximately unity at an isolator voltage of 2350 V. This calculated
value is within 4 percent of the measured 2250 V minimum of the magnetic isolator.

It should be pointed out that this calculation was also repeated for an isolator with a reduced-size insulator
section (7.6 mm long). Here the minimum breakdown voltage was measured to be ~1340 V at 12 Torr. The mini-
mum voltage is reduced as expected due to the larger electric field. This value deviated from the calculated mini-
mum breakdown voltage (1200 V) by ~10 percent. The measured deviations of the calculated minimum breakdown
voltage from the experimentally measured value can be attributed in part to uncertainty in collision cross-sections,
which can be as high as 20 to 30 percent.14 The upper limit on the uncertainty on the measured voltage value at
which breakdown occurs is estimated to be on the order of a few percent. These uncertainties contribute in part to
the deviations of the calculated value from experiment.

From this analysis, it can be seen that the isolator electric field and magnetic field are the two parameters
that can be varied to optimize the overall performance. Increasing the operating range of the magnetic propellant
isolator could be achieved by simply increasing the transverse magnetic field strength and reducing the electric field.
Increasing the length of the insulator section would decrease the electric field and therefore reduce the acceleration
distance 2 · a. In this respect, the isolator can be optimized such that the voltage at which the ratio s/l is unity is
maximized.
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V. CONCLUSIONS

An enhanced propellant isolator has been investigated for high voltage applications. The concept utilizes a
strong magnetic field to increase isolator breakdown voltage. The increase in breakdown voltage is attributed to the
magnetic field-reduced path-length over which the electron may gain energy from the electric field. All in all, the
transverse magnetic field can be used increase the voltage range that the isolator can safely stand off while at the
same time deliver propellant gas.
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Figure 1.—Ion engine power supply schematic illustrating propellant feed-line isolation from
   spacecraft ground.

Propellant
tank

Spacecraft
ground

Propellant
isolator

To cathode
and discharge
gas feed

Discharge
supply

Ion thruster

Ion beam

Neutralizer

High voltage
beam supply
500-2000 V

Accelerator
grid

supply

Anode

Cathode



NASA/TM—2000-210333      6

Ceramic

Metal end-cap

High voltage

Gas
flow

Figure 2.—Side view cross-section of a simplified pro-
   pellant isolator (cylindrically symmetric about axis
   along length).

Figure 3.—Idealized Paschen curve for gas break-
   down.
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Figure 4.—Transverse magnetic field propellant isolator
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Figure 6.—Experimental set-up.
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Figure 7.—Breakdown curves for isolator with and
   without transverse magnetic field.
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